clicksor

Thursday, August 2, 2012


THE 10 INSTRUMENTS MARS ROVER CARRIES

1.Radiation Assessment Detector

Curiosity itself doesn't mind radiation all that much. But the human explorers we plan to one day send to Mars might be a little more picky about the stuff. So as one of the few tools sent to Mars to prepare for human exploration, the Radiation Assessment Detector (RAD) has an important job. About the size of a small toaster, the device will look into the Martian atmosphere and use a stack of silicon detectors and a crystal of cesium iodide to measure cosmic rays and solar particles. As high-energy charged particles from the atmosphere head through the detectors, they produce electron or light pulses, allowing the RAD to determine their energy. The process could also tell us more about how radiation might have once hindered the development of life on Mars.

2.Mastcam Camera

The Mast Camera, also known as the Mastcam, isn't the first camera ever strapped to a rover, but it could easily be the most advanced. On board Curiosity, it'll take color images and video, and be able to stitch the images together to create beautiful  panoramas of the red planet's canyon-scapes. It features high-resolution lenses and will be able to take HD video at 10 frames per second, while a monochromatic setting can take single-color images to help analyze light patterns in different portions of the electromagnetic spectrum.

3.MEDLI

Engineers have a lot to worry about during Curiosity's descent through the atmosphere--as advertised by their "seven minutes to terror" video. But during that descent, Curiosity will already be working, gathering data for the next set of missions to Mars.
The MSL Entry, Descent and Landing Instrumentation (MEDLI) will monitor the heat and pressure it undergoes upon entry. It's actually made up of two kinds of instruments: MISP (MEDLI Integrated Sensor Plugs) and MEADS (Mars Entry Atmospheric Data System). Seven of each type sit on Curiosity's heat shield. (The system is the black box in the left of the photo.)

4.ChemCam

Maybe the most futuristic of Curiosity's tools, the ChemCam is an analyzing laser. By pointing it at areas as small as 1 millimeter, Curiosity will be able to determine the elemental composition of vaporized materials. A spectrograph will monitor the plasma created from zapping rocks and soil, then analyze its geological structure.

5.Mars Hand Lens Imager


The Mars Hand Lens Imager (MAHLI) will help give an extremely close view of samples to scientists back at home. Extremelyclose: MAHLI will be able to take color images as small as 12.5 micrometers (less than human hair size). A traditionally white, flashlight-type light source and an ultraviolet, black light source will allow it to work day and night. The UV light also has an ulterior function: it can light up samples to detect carbonate and evaporite minerals, which would be evidence that water helped form Mars.

6.The Rover Environmental Monitoring Station

In addition to being a great geologist, The Rover Environmental Monitoring Station (REMS) will make Mars Rover Curiosity into a great cosmic meteorologist. In daily and seasonal reports, REMS will send scientists information on atmospheric pressure, humidity, UV radiation, wind speed and direction, air temperature, and ground temperature.

7.Alpha Particle X-Ray Spectrometer

To get an accurate analysis of samples on Mars, the Alpha Particle X-Ray Spectrometer (APXS) works up close. When it makes contact with a rock or soil sample, it'll bombard it with alpha particles and X-rays emitted as the element curium, placed inside, decays. The rays knock electrons from the sample out of orbit, and the energy released can be measured by sensors. This much energy, you've got sodium. Count again, and you've got something else.

8.Chemistry and Mineralogy X-Ray Diffraction Instrument

Mars Rover Curiosity's mission isn't just one that represents the future of space tech; it's also about uncovering the history of Mars. Minerals can be a strong indication of what the planet looked like as it was forming. Certain minerals, for example, may indicate that lava once flowed near a certain area. The chemistry and Mineralogy X-Ray Diffraction Instrument (CheMin) will be able to find and analyze those and a whole lot more.

9.The Sample Analysis at Mars Instrument

The Sample Analysis at Mars (SAM) instrument is the technology behemoth of the Mars Rover Curiosity mission. A suite of three instruments, it makes up more than half of the scientific payload of Curiosity, and focuses on striking gold by finding evidence of life on Mars. The mass spectrometer, gas chromatograph, and tunable laser spectrometer inside can find compounds of carbon, such as methane, while also searching for lighter elements that might also indicate life, like hydrogen, oxygen, and nitrogen.

10.Dynamic Albedo of Neutrons

Even if Curiosity doesn't, say, run into a puddle, there are still ways for it to discover water on Mars. Cosmic rays constantly hit the planet's surface, knocking neutrons out of orbit. Hydrogen atoms in water or ice will slow those neutrons down, and that can be detected.
A pulsing neutron generator called the Dynamic Albedo of Neutrons (DAN) can detect water content as small as one-tenth of 1 percent. DAN will send a beam of neutrons into the surface, three to six feet into the ground; if it detects a large amount of slower neutrons, that's decent evidence there's water underneath.

No comments:

Post a Comment